Office-Home 是一个用于域适应的基准数据集,它包含 4 个域,每个域由 65 个类别组成。这四个领域是: 艺术——素描、绘画、装饰等形式的艺术形象;剪贴画——剪贴画图像的集合;产品——没有背景的物体图像;和真实世界——用普通相机拍摄的物体图像。它包含 15,500 张图像,平均每个类大约 70 张图像,一个类最多 99 张图像。
数据集介绍: 这24个数据集是由潘广汉、孙天生、托比·威德和丹尼尔·沙尔斯坦在2019-2021期间创建的。数据集包括11个场景,在许多不同的照明条件和曝光(包括移动设备的闪光灯和“手电筒”照明)下,从1-3个不同的观看方向成像。 References: [1] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
3D-IRCADb-01 数据库由 10 名女性和 10 名男性 75% 的肝肿瘤患者的 3D CT 扫描组成。 20个文件夹对应20个不同的患者,可以单独下载也可以联合下载。下表提供了图像信息,例如肝脏大小(宽度、深度、高度)或根据 Couninaud 分割的肿瘤位置。它还表明肝脏分割软件可能遇到的主要困难是由于与邻近器官的接触、肝脏的非典型形状或密度,甚至图像中的伪影。 For refer
“德国交通标志识别基准”是在 2011 年国际神经网络联合会议 (IJCNN) 上举办的多类单图像分类挑战赛。交通标志的自动识别是高级驾驶辅助系统所必需的,并且构成了具有挑战性的现实世界计算机视觉和模式识别问题。该数据集收集了超过 50,000 个交通标志图像的全面、逼真的数据集。它反映了由于距离、照明、天气条件、部分遮挡和旋转而导致的标志视觉外观的强烈变化。这些图像由几个预先计算的特征集补充,以
该数据集包含7022张人脑 MRI 图像,分为 4 类:胶质瘤-脑膜瘤-无肿瘤和垂体。注意这个数据集中的图像大小是不同的。可以在预处理并去除多余的边距后将图像调整为所需的大小。
半自动生成的细胞核实例分割和分类数据集,包含 19 种不同组织类型的详尽细胞核标签。该数据集由 481 个视野组成,其中 312 个视野是从多个数据源的 20K 多个不同放大倍率的整张幻灯片图像中随机采样的。该数据集总共包含 205,343 个标记的核,每个核都有一个实例分割掩码。在 pannuke 上训练的模型可以帮助整个幻灯片图像组织类型分割,并推广到新组织。PanNuke 演示了首批成功半自
数据集介绍: 单图像去叠是一个不适定问题,最近引起了重要关注。尽管在过去几年中,人们对去雾的兴趣显著增加,但由于缺乏真实的雾度和相应的无雾度参考图像对,去雾方法的验证在很大程度上仍然不令人满意。为了解决这一局限性,我们引入了一种新的去雾数据集稠密雾。《浓雾》以浓密均匀的朦胧场景为特征,包含33对真实的朦胧图像和各种室外场景的相应无霾图像。通过引入由专业雾霾机器生成的真实雾霾来记录雾霾场景。朦胧和无
一个小型版本的数据集,它由代表 160 个场景实例的160 个图像对(噪声和ground-truth)组成。 Papers Abdelrahman Abdelhamed, Lin S., Brown M. S. "A High-Quality Denoising Dataset for Smartphone Cameras", IEEE Computer Vision and Pattern